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Abstract

The effects in the biosphere from the Total Solar Eclipse of 29 March 2006 were in-
vestigated in field crops and marine zooplankton. Taking into account the decisive role
of light on the photoenergetic and photoregulatory plant processes, measurements
of photosynthesis and stomatal behaviour were conducted on seven important field-5

grown cereal and leguminous crops. A drop in photosynthetic rates, by more than a fac-
tor of 5 in some cases, was observed, and the minimum values of photosynthetic rates
ranged between 3.13 and 10.13µmol CO2 m−2 s−1. However, since solar irradiance
attenuation has not at the same time induced stomatal closure thus not blocking CO2
uptake by plants, it is probably other endogenous factors that has been responsible10

for the observed fall in photosynthetic rates. Field studies addressing the migratory re-
sponses of marine zooplankton (micro-zooplankton (ciliates), and meso-zooplankton)
due to the rapid changes in underwater light intensity were also performed. The light in-
tensity attenuation was simulated with the use of accurate underwater radiative transfer
modeling techniques. Ciliates, responded to the rapid decrease in light intensity during15

the eclipse adopting night-time behaviour. From the meso-zooplankton assemblage,
various vertical migratory behaviours were adopted by different species.

1 Introduction

On 29 March 2006, millions of people in the Northern Hemisphere had the opportunity
to observe a total solar eclipse. In the Greek territory, the phenomenon had a maximum20

duration of 2 min and 58 s, at the small island of Kastelorizo in the east-southern part
of the country.

The effects of solar eclipses on the behaviour of living organisms have been the
subject of many observations. Plant behaviour was first studied by Deen and Bruner
(1933) by following stomatal movements of the gray birch during the sun eclipse of25

1932. Two Polish zoologists were the first to observe the behaviour of mammals, birds,
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and insects during seven eclipses between 1954 and 1975 (Zirker, 1995). More recent
data have shown that birds behave as they normally do at sunset (Tramer, 2000),
animals alter their behaviour (Jennings et al., 1998) and some planktonic crustacea
are vertically redistributed (Vecchione et al., 1986; Giroud and Balvay, 1999).

In general, eclipse effects on plants are expected to be related to the light limita-5

tion experienced during the phenomenon. Although fluctuating light conditions are a
common feature for natural habitats (e.g. through transitional light flecks in canopies,
changing cloudiness, diurnal periods of light and dusk), the dynamics of the decline
of radiation during an eclipse typically differ (Schulze and Hall, 1982; Kuppers et al.,
1997). Moreover, observations have shown that a drop of sap flow in a number of plants10

was related to solar eclipses (Ladefoged, 1963; Fernandez et al., 1996; Morecroft et
al., 2000).

Developmental processes, such as transient aberrations in the chromosomal struc-
ture of root meristems and a delaying seed germination, have been also ascribed to
the impact of an eclipse (Sathalah et al., 1984; Kumar et al., 1984). In addition, limited15

short-term effects on photosynthesis and evapotranspiration of crop plants, such as
pigeon pea and bread wheat, were reported by Singh et al. (1992). In mature forest
trees of Picea abies, Fagus sylvatica and Quercus robur photosynthesis was reduced
to an extent that allowed net CO2 evolution from leaves during an eclipse (Häberle et.
al., 2001).20

The effects of solar eclipses on marine ecosystems have been partially studied.
Pepita (1955) reported an upward migration of free-swimming larvae of shrimps, clams,
snails and barnacles, as well as of adult copepods during the period of maximum to-
tality, in Sebastopol Bay. Skud (1967) observed a decrease in zooplankton volumes at
surface waters in Maine, although he reported an upward migration of two copepod25

species (Pseudocalanus minutus and Acartia longiremis), during the time of darkness.
Adult copepods moved upwards in the water column during an eclipse event observed
in the region of Boothbay harbor, Maine, in March 1970 (Sherman and Honey, 1970).
Similarly, Bright et al. (1972) found that certain species of copepods and euphausi-
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aceans (e.g. Nannocalanus minor, Scolecithrix danae and Undinula vulgaris) in the
Gulf of Mexico, responded to the noontime solar eclipse of March 1970 by migrating
to the surface. Moreover, according to Bright et al. (1972), the response as reflected
in the number of organisms captured at the surface, was larger than the respective
response to a decrease in light intensity at night. Some studies of the movements of5

scattering layers during solar eclipses showed that layers started ascending at the be-
ginning of the eclipse (Backus et al., 1965; Tont and Wick, 1973; Kampa, 1975), while
in other cases the scattering layers did not respond at all (Franceschini et al., 1970).

The diurnal vertical migration of many zooplankters is a well known behavior, with
some of the organisms migrating several hundred meters in the water column (Mar-10

shall and Orr, 1955; Longhurst, 1976). The factors controlling vertical migration in
mesopelagic species, however, have not been intensively studied. It is generally ac-
cepted that down-welling irradiance plays an important role (Banse, 1964; Ringelberg,
1995), since most vertical migrations of plancton occur at sunrise and sunset. Al-
though, most of the above studies concern mesozooplankton there is lack of informa-15

tion concerning other zooplankton organisms.
This study aims at investigating the effects of solar eclipses on field crops and marine

zooplankton in Greece, during the 29 March 2006 total solar eclipse. Since there is
no available evidence on the mechanisms involved in the effects of solar eclipses on
photosynthesis and stomatal behaviour, and taking also into account the decisive role20

of light on the photoenergetic and photoregulatory plant processes, this has been an
excellent opportunity. A total solar eclipse, providing a sort of artificial night, offers
the possibility to study the migratory responses of marine organisms. Field studies
addressing this issue are scarce, primarily because of the difficulties associated with
measuring rapid changes in underwater light intensity, simultaneously with changes in25

animal distributions. In this study, this has been overcome with the use of accurate
underwater radiative transfer modeling techniques.
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2 Materials and methods

2.1 Photosynthesis and stomatal conductance in field crops

2.1.1 Study site

The study was carried out in the experimental field of the Agricultural University of
Athens (37◦59′ N, 23◦32′ E), at an altitude of 30 m a.s.l. The site was located about5

560 km from the central axis of the eclipse totality, with 84% sun obscuration. The
crops have been growing in a slightly alkaline (pH 7.24) clay loam soil (35.9% sand,
35.9% silt and 29.8% clay) over an area of 400 m2.

2.1.2 Plant material

Seven important field-grown cereal and leguminous crops were studied. In particular,10

the studied crops were: cereals [Triticum durum (durum wheat), Tr. aestivum (bread
wheat), Hordeum vulgare (barley), Avena sativa (oat)] and legumes [Lathyrus sativus
(grass pea), Pisum sativum (pea) and Vicia faba (faba bean)]. During the eclipse case
study all cereals were at the booting stage and the legumes at flower appearance. The
measurements were taken on the third leaf from the top for the cereals and on the15

leaves at the middle of the stem for the legumes.

2.1.3 Measurements of photosynthesis and stomatal conductance

The chlorophyll fluorescence technique was used to measure the photosynthetic activ-
ity of leaves. Net photosynthesis (Pn) and stomatal conductance (gs) were measured
in the field using a closed portable Infra-Red Gas Analysis (IRGA, LI-COR, LI-620020

model) system. The top leaf was enclosed in a 4 litre chamber connected to the IRGA,
and the instrument was moved from crop to crop for consecutive measurements within
less than one minute. Air flow rate into the IRGA system was 800µmole s−1. Photo-
synthetic Active Radiation (PAR) measured with a quantum sensor connected to the
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chamber, was found to be 1700±150µmol photons m−2 s−1. Pn and gs calculation
was based on the equations of Leuning and Sands (1989) and are expressed as µmol
CO2 m−2 s−1 and mole m−2 s−1, respectively. Hourly measurements were carried out
during 6:00–17:00 UTC on 29 March 2006.

Additional meteorological and actinometric data monitored at Thission station (Na-5

tional Observatory of Athens) were used in this study. Information about the station
characteristics and infrastructure used can be found in Founda et al. (2007).

2.2 Marine zooplankton

2.2.1 Study site and hydrographic measurements

One oceanographic cruise on board the R/V AEGAIO was carried out on 29 March10

2006, at a fixed station close to Kastelorizo Island in the Eastern Mediterranean
(36◦08′ N, 29◦34′ E). Downward surface global (200–850 nm) and direct (280–700 nm)
irradiance spectra were measured during 9:00–13:00 UTC at a sampling frequency of
20 s and 8 s, respectively, using two diode-array spectrometers (Kazadzis et al., 2007;
Blumthaler et al., 2006).15

The water column structure was sampled before, during, and after the eclipse, at
approximately 1 h intervals, during an 8 h period (Table 1). Vertical profiles of temper-
ature and salinity were measured with a Seabird CTD System (911 plus) assembly.
Phytoplankton fluorescence (Chl-a) was recorded with a Chelsea in situ fluorometer.
Water samples were taken in the euphotic 0–100 m layer, using Niskin bottles with20

teflon-coated springs and O-rings. For microzooplankton, 7 replicate samples were
taken hourly, every 10 m in the water column, whereas for mesozooplankton, 6 repli-
cates of samples were collected hourly at descrete layers (0–10 m, 10–20 m, 20–50 m,
50–100 m, 100–200 m).
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2.2.2 Zooplankton measurements

Five hundred ml micro-zooplankton samples were preserved with borax-buffered for-
malin (final concentration 2% formaldehyde) and stored at 4◦C in the dark. Before
examination, samples were left to settle in their bottles in the dark at 4◦C and after
48 h, the top 400 ml of the sample was slowly siphoned off. The bottom 100 ml of the5

sample was transferred into sedimentation chambers, allowed to settle for 24 h (Uter-
mohl, 1951) and was finally examined by means of an inverted microscope OLYMPUS
IX 70.

Meso-zooplankton was sampled by vertical hauls of a WP-2 net (200µm mesh size).
Samples were fixed immediately after collection and preserved in a 4% borax buffered-10

formaldehyde seawater solution. In the laboratory the samples were split using a fol-
som splitter. The first half was used to get information on the taxonomic level of order
or species and counted under an OLYMPUS stereoscope.

2.2.3 Underwater radiative transfer modeling

Measured changes in above water light intensity and underwater composition during15

the solar eclipse, were used as input to the extensively validated Hydrolight Radiative
Transfer Program (Mobley, 1988), to estimate changes in underwater radiation fields.
In the absence of in situ underwater radiometric measurements, the model calculations
allowed us to estimate the changes in light levels (e.g. PAR) at specific depths in the
water column, where changes in micro- and meso-zooplankton concentrations were20

observed during the solar eclipse event. Mobley (1994) has given a detailed description
of the physical assumptions and mathematical calculations in the Hydrolight Model.
Tzortziou et al. (2006) recently reported very good agreement (differences less than
10%) between in situ measurements of water leaving radiance and Hydrolight results,
over a wide range of conditions in the bio-optically complex estuarine waters of the25

Chesapeake Bay, and demonstrated very good optical closure between independently
measured quantities.
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Measurements of downward surface irradiance spectra, Es(λ), and chl-a vertical pro-
files were used as inputs to perform the model calculations. The water was modeled
by three components: pure water, pigmented particles and covarying colored dissolved
organic matter (CDOM). We assumed that mineral concentrations were negligible in the
very clear, oligotrophic waters at the Kastelorizo site.5

The Pope and Fry (1997) absorption values for pure water and the seawater scat-
tering coefficients of Morel (1974) as retabulated by Smith and Baker (1981), were
used in our model simulations. Particle absorption at depth z and wavelength λ,
ap(z,λ), was estimated using the Morel (1991) model and the chlorophyll-specific
absorption coefficients given in Prieur and Sathyentranath (1981). Absorption by10

CDOM,aCDOM(z,λ), was assumed to covary with particle absorption according to
aCDOM(z,λ)=0.2·ap(z,440)·exp[-0.014·(λ-440)] (Mobley and Sundman, 2000). Particu-
late scattering was estimated using the Gordon and Morel (1983) model, while CDOM
was assumed to be non-scattering. Because measurements of particulate backscat-
tering were not available, a backscattering fraction of 0.044 was used in our calcula-15

tions based on previous studies for clear waters (e.g. Mobley, 1994; Stramski et al.,
2004). Raman scattering and CDOM and chlorophyll-a fluorescence were included in
all model runs using the Hydrolight default assumptions for fluorescence efficiency and
wavelength redistribution functions for fluorescence by chlorophyll (Mobley, 1994) and
CDOM (Hawes, 1992).20

Water surface roughness was estimated assuming that the slope probability distribu-
tion of the capillary waves follows the Cox and Munk (1954) wind-direction independent
distribution. A wind speed of 5 m s−1 was used in the simulations based on local me-
teorological observations. The water column was assumed to be infinitely deep below
the greatest depth of interest (ca. 250 m). Model results included underwater vertical25

profiles of photosynthetically active radiation, PAR (in µmol phot m−2 s−1), estimated
according to Mobley (1994) from underwater scalar irradiance, Eo(z,λ), and integrated
over the spectral region 400–700 nm.
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3 Results and discussion

3.1 The effect of the solar eclipse on photosynthesis and stomatal conductance

On 29 March 2006, the eclipse effects on the biosphere and on various atmospheric
layers have been investigated during a combined field experiment over Greece. Infor-
mation about the experimental campaigns, the measurement sites, eclipse path maps5

and eclipse local circumstances at each location, can be found in the overview paper
by Gerasopoulos et al. (2007).

The diurnal course of meteorological parameters during 29 March 2006 is shown in
Fig. 1. Solar global irradiance (Fig. 1a) displayed a sharp decline of 796 W m−2 during
the eclipse, in comparison with the pre-eclipse maximum. A decline was also exhibited10

in air temperature (2.2◦C, Fig. 1b) and atmospheric pressure (0.7 hPa, Fig. 1d). On the
other hand, relative humidity increased by about 10% (Fig. 1c). The combination of light
“switch off” and increased humidity, together with the decreased temperature during
eclipses has been previously shown to have an impact on forest trees (e.g. Steppe et
al, 2002).15

Figure 2 illustrates the diurnal course of photosynthetic rate for the cereals and
legumes examined. A drop in photosynthetic rates, by more than a factor of 5 in some
cases, was observed as a response to the variation in PAR during the eclipse. The
minimum values of observed photosynthetic rates ranged between 3.13 (faba beans)
and 10.13µmol CO2 m−2 s−1 (bread wheat). The relative reduction of photosynthesis20

during the eclipse varied among the different species (Table 2, Fig. 2). Faba beans,
oats and grass pea were the most intensely affected, in contrast to whereas bread
wheat, pea, barley and durum wheat. In general, cereals were less influenced than
legumes; with min/max ratios on average 0.31 and 0.24, respectively.

Given that the minimum irradiance during the eclipse was equivalent to that recorded25

at 16:00 UTC (about 62 W m−2), it is not surprising that the rates of photosynthesis
at totality were roughly similar to those observed at 16:00 UTC. Thus, the effects of
solar eclipse on photosynthesis resemble those obtained at dusk in agreement with
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Matyssek (1986) and Häberle et al. (2001).
One-way ANOVA was applied, on three replicates for each plant, in order to test the

statistical significance of the variance in stomatal conductance (gs). Table 3 shows
the diurnal changes of gs for the examined species. In all species except pea, gs
showed a decline at 10:00 UTC and at earlier eclipse stages, occasionally significant5

(e.g. in bread wheat, oats, and faba beans) in comparison with the preceding values. At
10:30 UTC however a time near the totality, gs returned to values before the beginning
of the eclipse, maintained throughout the rest of the day. Thus, the drop in gs at
10:00 UTC is probably not eclipse induced and an additional important argument is
that the timings of minimum gs and minimum photosynthetic rate do not coincide.10

From the above it is evidenced that the diurnal course of gs followed the typical
pattern expected for mesophytic crop species: higher values early in the day 6:00–
7:00 UTC, steadily declining within the next two-three hours and remaining stable there-
after. It is also known that morning values of gs are higher than those observed in the
afternoon for similar PAR (Rochette et al., 1991). A midday temporary decrease in gs15

is also a common phenomenon in dry environments, like the one of southern Greece.
Accordingly, the drop in gs observed at 10:00 UTC simply reflects normal, “midday
stomatal closure” (Miller, 1938; Meidner and Mansfield, 1968).

Stomatal movements are greatly affected by environmental conditions. Light is re-
ported to be amongst the most important factors determining the course of stomatal20

behaviour (Meidner and Memsfield, 1968), although many interactions with other en-
vironmental (e.g. CO2–concentration, vapour pressure deficit, temperature, etc.) and
plant factors (plant water status, endogenous rhythms) exist to a considerable extent. It
is obvious from our results that the solar eclipse has influenced photosynthesis (Fig. 2)
but on the other hand it was not an important factor directly affecting the course of gs25

(Table 3). Consequently, since solar irradiance attenuation has not induced stomatal
closure thus not blocking CO2 uptake by plants, it is probably other endogenous fac-
tors coupled with the absence of light that has been responsible for the observed fall in
photosynthetic rates.
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Photosynthesis is inherently dependent on light. The three functions of the light har-
vesting apparatus (light capturing, energy transfer and electron transfer) are controlled
by the physical and chemical characteristics of the plant pigments. Absence of light dis-
rupts electron transport, leading to a decline of photosynthesis (Schreiber et al., 1995).
This sequence of events also occurs during a solar eclipse which, to some extent, re-5

sembles the daily down and dusk periods with their gradual changes in PAR. However,
in contrast with normal diurnal courses, the time span of the decline in PAR and its sub-
sequent recovery during a total solar eclipse last for only a few minutes each, which is
much shorter than the duration of dawn and dusk in the temperate climates.

3.2 The effect of eclipse on marine zooplankton10

The solar eclipse induced effects on ecosystems has been additionally investigated in
the marine environment. These effects are mainly driven by the change of underwa-
ter irradiance that has been simulated via the Hydrolight Radiative Transfer Program
for the case of Kastelorizo. Figure 3 shows the change with time in downward irradi-
ance as measured above the water surface, Es, during the eclipse event. Light inten-15

sity dropped dramatically with the onset of the eclipse, with Es at 550 nm decreasing
from ∼1.35 W m−2 nm−1 at 9:35 UTC (1st contact) to below the range of the instru-
ment’s sensitivity during totality 10:53 UTC, increasing again to ∼1.16 W m−2 nm−1 at
12:10 UTC (last contact). Model estimated photosynthetically active radiation (PAR)
just below the water surface was ∼2000µmol phot m−2 s−1 just before the 1st contact,20

while the evolution of PAR at more depths (10 and 30 m) is also shown in Fig. 3.
The water column structure at the sampled station before, during and after the

eclipse is described in Fig. 4. Temperature and salinity ranged from 16.2 to 17◦C and
from 39 to 39.2 psu, respectively, in the upper 200 m. Due to spring warming, the sur-
face layer (from the surface down to 20–30 m) is warmer and saltier than the underlying25

waters, transported in the area by the Asia Minor current (POEM group, 1992). The
water mass under the thermocline is the Levantine Intermediate water, with almost ho-
mogenous temperature and salinity extended down to 250 m. Temperature and salinity
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remained almost constant during the eclipse event. Chl-a concentration varied from
0.14 to 0.19µg l−1, with a small chlorophyll maximum between 40 and 60 m. No signif-
icant changes in chl-a vertical distribution were observed during the eclipse event.

Ciliates

The ciliate community included members of the orders Choreotrichida (Strobilidium5

spp, Lohmaniella spp), Tintinnida, Oligotrichida (Strombidium spp, Tontonia spp and
Laboea spp). Cell numbers were dominated by small oligotrichs 20-30 µm (35-75%).

From the vertical abundance profiles (Fig. 5, K1 and K3) it was clear that before the
eclipse ciliates showed a non-random distribution and tended to accumulate at 30 m
depth, where they showed a distinct peak in cell numbers (up to 212 cells l−1). At this10

depth, PAR was ∼11% of its surface value (cast K2 in Fig. 6).
However, at 10:20 UTC (cast K4), one hour after the 1st contact and 30 min before

totality, we observed a vertical homogenous spreading of the ciliates in the water col-
umn. At this time, surface PAR had already decreased by ∼50%. It seemed like ciliates
responded to the rapid decrease in light intensity during the eclipse, adopting a night-15

time behavior. At 11:20 UTC (cast K5), almost 30 min after totality, when surface PAR
was ∼35% of its initial value before the eclipse, ciliates were found in greater numbers
within the first 20 m from the surface. Two hours after totality (cast K6 at 12:50 UTC),
the notable peak at 30 m was re-established.

Ciliate diel cycles have been surprisingly little studied before. Jonsson (1989) re-20

ported that ciliates often accumulate around the pycnocline, mainly due to the effect
of negative geotaxis. Chemokinetic and photokinetic responses have been shown
to influence the vertical distributions in some ciliates in lake environments (Finlay et
al., 1987). Interactions between sinking velocity, swimming velocity, tumbling rate and
shape or density asymmetry of the cell have also been suggested to explain the ver-25

tical distribution of planktonic ciliates in natural waters (Jonsson, 1989). Perhaps the
ciliate community tried to stay within its optimal photo-environment during the unusu-
ally rapid decrease in light intensity due to the eclipse. Vertical migration could also

1302

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/1291/2008/acpd-8-1291-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/1291/2008/acpd-8-1291-2008-discussion.html
http://www.egu.eu


ACPD
8, 1291–1320, 2008

March 2006 total
solar eclipse effects

on ecosystems

G. Economou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

be governed by other factors, such as predation. Ciliates could move downwards in
order to avoid predation pressure from zooplankton, accumulated near the surface lay-
ers at night. Perez and Dolan (1995) found in a study at the Western Mediterranean
sea, that chlorophyll containing ciliates were mainly concentrated at the chl-a maxi-
mum depth, however heterotrophic ciliates often migrated from 20–30 m depth during5

the day to the surface at night or in the early morning. Measurements by Stoecker et
al. (1989) across Georges Bank (Northwest Atlantic), revealed that oligotrichous cili-
ates with chloroplasts were usually located in the upper half of the euphotic zone during
the day, showing diel changes in their distribution pattern. For example, Laboea stro-
bila was concentrated near the surface just before sunrise and early in the morning,10

but had a subsurface maximum at noon.

Mesozooplankton

The mesozooplankton assemblage was made up 39–74% by copepods, showing an in-
creasing relative abundance with depth. Copepodites of Clausocalanus, Paracalanus,
Oithona and Ctenocalanus dominated the copepod assemblage (up to 40, 42, 19 and15

15% respectively). Less important were Clausocalanus paululus, Ctenocalanus vanus,
Oithona plumifera and Oncea media (up to 8–10%). The non-copepod zooplankton
made a significant contribution to the total abundance represented, by 5 taxa: Appen-
dicullaria, Doliolidae, Chaetognatha, Medusae and Pteropoda.

Figure 7 shows the results of copepod vertical distribution at the surface down to20

100 m. Copepods exhibited the greatest density between 10–20 m depth. At K4
10:20 UTC when surface PAR was ∼50% (Fig. 6) of that before the eclipse, cope-
pods showed higher abundance close to the surface which can be explained by a
possible migrating behaviour. Calanus and Clausocalanus copepodites seemed to be
synchronized with the exogenous changes of light due to the eclipse. Individuals of25

these species showed a vertical migratory movement towards the surface. Among
the other copepodites, Paracalanus mainly localized at 0-10m increased their abun-
dance in this layer before totality. Oithona plumifera collected mostly in the 10–20 m
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tows appeared in greater abundance in the 0–10 m layer, as well as Oncea media con-
centration increased at the surface layers. The other copepodites, male and female
copepods displayed no significant differences in distribution and apparent response to
the eclipse.

Similarly, the other zooplankton taxa were distributed high in the water column (10–5

20 m), whereas the fall of light intensity resulted in a migration upwards to the surface
It seems that appendicullaria (Oikopleura dioica), meduses and doliolids responded to
light changes and did move up in the water column towards the surface. Pteropods
that maintained themselves mainly at 0-10m increased their abundance before totality,
while chaetognaths did not respond to light changes during the eclipse.10

Avoidance of light by zooplankton has been demonstrated by many studies with a re-
marked preference for the surface layers during dawn and dusk (Conover et al., 1988;
Hays et al., 1974). Earlier reports for Pseudocalanus and Calanus species (Runge and
Ingram, 1991; Hattori and Saito, 1997), showed that medium to large calanoids exhib-
ited a normal diel vertical migration moving upward into the surface layer sometime15

between 19:00 h and midnight. Calanus is a fast swimmer moving in short bursts of
about 15–66 m/h (Marshall and Orr 1955). In a study of the diurnal vertical movements
of chaetognaths and appendicularia, Schmidt (1973) reported that these animal groups
during daytime avoid the upper layers, although around sunset and sunrise they tend
to accumulate above 25 m. Consistent with our results are Sherman and Honey (1972)20

data, reporting that chaetognaths showed little change in vertical distribution during
the eclipse. However the strong responses reported by Pepita (1955) for chaetognaths
and decapod larvae differed from our results, probably due to species composition of
the zooplankton.

4 Summary and conclusions25

The solar eclipse of 29 March 2006 had very important effects on ecosystems, both
on plants and marine zoo-plankton, which have been investigated in a parallel field
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experiment.
The diurnal course of photosynthetic rate for the seven important field-grown cereal

and leguminous crops studied here, indicated a dramatic drop during the total phase of
the eclipse. The minimum values of observed photosynthetic rates varied among the
different species and ranged between 3.13 (faba beans) and 10.13µmol CO2 m−2 s−1

5

(bread wheat). Cereals were less influenced than legumes and in particular faba
beans, oats and grass pea were the most intensely affected. The latter may enable
their use as potential indices for future investigation of the effects of climate changes
on field crops.

The instantaneous changes observed in the diurnal cycle of stomatal conductance10

(gs) for the examined species could not be attributed to solar eclipse. Thus, since solar
irradiance attenuation has not at the same time induced stomatal closure, thus not
blocking CO2 uptake by plants, it is probably other endogenous factors that has been
responsible for the observed fall in photosynthetic rates. This should be taken under
serious consideration for planning of future solar eclipse related experiments.15

The solar eclipse induced effects on the marine environment were mainly driven
by the change of underwater irradiance. Model estimated photosynthetically active
radiation (PAR) just below the water surface was ∼2000µmol phot m−2 s−1 just before
the 1st contact. Temperature and salinity remained almost constant during the eclipse
event. Chl-a concentration varied from 0.14 to 0.19µg l−1. No significant changes in20

chl-a vertical distribution were observed during the eclipse event.
The behavior of marine populations has been investigated, separately for micro-

zooplankton (ciliates) and meso-zooplankton. Ciliates, tending to accumulate at 30 m
depth, responded to the rapid decrease in light intensity during the eclipse and adopt-
ing night-time behaviour showed a vertical homogenous spreading in the water column.25

At this time, surface PAR had already decreased by ∼50%. From the mesozooplank-
ton assemblage, Calanus and Clausocalanus copepodites having been synchronized
with the exogenous changes, showed a vertical migratory movement towards the sur-
face. Among the other copepodites, Paracalanus, Oithona plumifera as well as Oncea
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media increased their abundance in the surface layer before totality. The other cope-
podites, male and female copepods displayed no significant differences in distribution
and apparent response to the eclipse. Similarly, the other zooplankton taxa such as
appendicullaria (Oikopleura dioica), meduses and doliolids responded to light changes
moving up towards the surface.5

Overall, given the biodiversity of the Greek territory we seized the opportunity of
the March 2006 Total Solar Eclipse to investigate the sensitivity of various species in
the biosphere. The different responses ascertained between various species both in
field crops and marine zoo-plankton, provide an early alert that future climate changes
influencing the amount of radiation that reaches the earth’s surface, may disturb the10

stability of the ecosystems, with direct and indirect impacts on crop productivity and in
some cases on food chain it self.
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Table 1. Micro-zooplankton and meso-zooplankton samplings before, during and after the total
solar eclipse at Kastelorizo marine station (max depth 290 m).

Cast Time Zooplankton Measurements
(UTC) Micro- Meso-

K1 7:52 + +
K2 9:00 +
K3 9:40 + +
K4 10:20 + +
K5 11:20 + +
K6 12:50 + +
K7 14:15 +
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Table 2. Maximum photosynthetic rates observed before the beginning of the eclipse and
minimum photosynthetic rates near totality, for the examined species. The minimum/maximum
ratios are also shown.

Species Photosynthetic rates µmol CO2 m−2 s−1

Max before Min at totality Min/Max

Triticum durum 26.70 7.08 0.2651
Triticum aestivum 22.47 10.13 0.4508
Avena sativa 27.59 5.41 0.1961
Hordeum vulgare 27.26 8.89 0.3261
Lathyrus sativus 21.66 4.61 0.2128
Pisum sativum 28.52 9.87 0.3461
Vicia faba 19.12 3.13 0.1637
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Table 3. Diurnal changes in stomatal conductance as least means (mmol g H2O m−2 s−1), of
four cereals and three leguminous species during the 29 March 2006 eclipse, at AUA exper-
imental field. Values followed by the same letter are not statistically significant at the 95%
significance level.

Time Crop field species
(UTC) Hard wheat Bread wheat Oat Barley Lathurus Pisum Faba beans

6:00 1.14 a 1.87 a 0.94 a 0.47 ab 2.1 a 1.58 a 0.9 a
7:00 0.66 b 0.8 bc 0.49 c 0.51 a 1.09 b 1.41 a 0.46 b
8:00 0.5 c 0.4 d 0.64 b 0.5 ab 0.52 cd 0.71 b 0.35 cd
9:00 0.31 de 1.08 b 0.35 d 0.33 c 0.42 cd 0.22 c 0.3 de
10:00 0.29 e 0.35 d 0.17 g 0.28 cd 0.27 d 0.41 bc 0.16 f
10:30 0.38 de 0.55 cd 0.25 efg 0.33 c 0.36 cd 0.38 c 0.34 cd
12:00 0.42 cd 0.41 d 0.29 def 0.43 b 0.62 c 0.3 c 0.22 ef
13:00 0.43 cd 0.3 d 0.2 fg 0.25 de 0.32 cd 0.2 c 0.35 cd
14:00 0.33 de 0.24 d 0.33 de 0.34 c 0.31 cd 0.25 c 0.24 ef
15:00 0.3 e 0.22 d 0.36 d 0.49 ab – – – – 0.4 bc
16:00 0.11 f 0.34 d 0.16 g 0.18 e 0.19 d 0.42 bc 0.21 ef
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Figure 1.  The diurnal course of meteorological parameters a) Global Horizontal 

Irradiance, b) Temperature, c) Relative Humidity and d) Pressure, during 29 March 

2006, at Thission station, Athens (National Observatory of Athens). 
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Fig. 1. The diurnal course of meteorological parameters (a) Global Horizontal Irradiance, (b)
Temperature, (c) Relative Humidity and (d) Pressure, during 29 March 2006, at Thission station,
Athens (National Observatory of Athens). 1314
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Figure 2.  Diurnal changes in CO2 assimilation rate (μmol CO2 m-2 s-1), of four 

cereals and three leguminous species during March 29, 2006 eclipse, at AUA 

experimental field (TRD- Tr. durum, TRA- Tr. aestivum, HOV-  H. vulgare, AVS- A. 

sativa, LAS- Lathurus sativus, PIA- P. arvense, VIF- V. faba). 
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Fig. 2. Diurnal changes in CO2 assimilation rate (µmol CO2 m−2 s−1), of four cereals and three
leguminous species during 29 March 2006 eclipse, at AUA experimental field (TRD- Tr. durum,
TRA- Tr. aestivum, HOV- H. vulgare, AVS- A. sativa, LAS- Lathurus sativus, PIA- P. arvense,
VIF- V. faba).
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Figure 3. (Left axis) Change in measured downward surface irradiance (in W m-2 nm-

1) at 550 nm during the eclipse event (solid line). (Right axis) Change in model 

estimated photosynthetically active radiation (PAR, in μmol phot m-2 s-1) just below 

the water surface (z=0 m, dash line), at 10 m depth (dash-dot line), and at 30 m depth 

(dash dot dot line). The exact times of the casts K2, K4, K5 and K6 are shown as 

vertical dash lines.  
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Fig. 3. (Left axis) Change in measured downward surface irradiance (in W m−2 nm−1) at 550 nm
during the eclipse event (solid line). (Right axis) Change in model estimated photosynthetically
active radiation (PAR, in µmol phot m−2 s−1) just below the water surface (z=0 m, dash line), at
10 m depth (dash-dot line), and at 30 m depth (dash dot dot line). The exact times of the casts
K2, K4, K5 and K6 are shown as vertical dash lines.
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Figure 4. Distribution of Temperature (red line), Salinity (blue line) and Chlorophyll-

a (grey line) versus depth (down to 200 m). The profiles K1 and K7 represent the 

water column before the first contact and after the last contact, respectively. The 

profiles K4 and K5 are taken before and after the maximum of the eclipse. 
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Fig. 4. Distribution of Temperature (red line), Salinity (blue line) and Chlorophyll-a (grey line)
versus depth (down to 200 m). The profiles K1 and K7 represent the water column before the
first contact and after the last contact, respectively. The profiles K4 and K5 are taken before
and after the maximum of the eclipse.
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Figure 5. Vertical distribution (abundance l-1) of ciliates during different sampling 

hours. K1 and K7 correspond to the first contact and the last contact respectively. K4 

and K5 are taken before and after the maximum of the eclipse. 

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

cells l-1

D
ep

th
 (m

)

K1 K3 K4
K5 K6 K7

 
 

 27

Fig. 5. Vertical distribution (abundance l−1) of ciliates during different sampling hours. K1 and
K7 correspond to the first contact and the last contact, respectively. K4 and K5 are taken before
and after the maximum of the eclipse.
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Figure 6. Vertical profiles of PAR during different sampling hours. The exact time of 

casts K2, K4, K5 and K6 is shown in Figure 3. 
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Fig. 6. Vertical profiles of PAR during different sampling hours. The exact time of casts K2, K4,
K5 and K6 is shown in Fig. 3.
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Figure 7. Vertical distribution (abundance m-3) of A.) copepods and B.) other 

mesozooplankton taxa during different sampling hours. K4 is taken before the 

maximum of the eclipse. 
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Fig. 7. Vertical distribution (abundance m−3) of (a) copepods and (b) other mesozooplankton
taxa during different sampling hours. K4 is taken before the maximum of the eclipse.
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